Российская Академия Наук
Сибирское Отделение
 
 Главная
 История
 Дирекция
 Лаборатории
 Службы
 Конференции
 Отчеты института
 Научные достижения
 Проекты РНФ
 Публикации
 Патенты
 СМИ об институте
 Ресурсы библиотеки
 Научный стационар
 Совет молодых ученых
 Семинары
 Соленые озера (ISSLR)
 Коллекция светящихся микроорганизмов
 Конкурсы
 Диссертационный совет
 Вакансии
 Документы для скачивания
 Поиск по сайту
 Контакты


Rambler's Top100

Поддержка сайта - студия "Сертификат публикации"

 

Историческая справка

Институт биофизики Сибирского Отделения Российской Академии Наук основан 1 июля 1981 г.  на базе Отдела биофизики, функционирующего в составе Института физики им. академика Л.В. Киренского СО АН СССР

Директор-организатор Института биофизики СО РАН - академик Иван Александрович Терсков (1981-1984 гг.).

С 1984 г. по 1996 г. руководство Институтом осуществлял академик Иосиф Исаевич Гительзон, в настоящее время - советник РАН.

С 1996 г. Институтом руководит Академик РАН Дегерменджи Андрей Георгиевич.

В Институте биофизики СО РАН сформировано и развивается новое направление в биофизике надорганизменных систем, обосновавшее возможность интегрального подхода к диагностике состояния биологических систем различного уровня организации и сложности.

Широкий диапазон объектов исследования - от бактерий и простейших до высших организмов, включая человека, до природных экосистем -, объединенный общим методологическим подходом, заключающемся в анализе механизмов управления биосинтезом в биологических множествах, успешно развивается, а полученные результаты общепризнанны.

Биофизический подход, первоначально примененный к анализу состояния и динамике эритроидных популяций, использован для исследования системы красной крови в организме животных и человека. На основе изученных закономерностей в лаборатории биофизики разработаны методы дисперсионного анализа системы кроветворения по кинетике гемолиза (метод эритрограмм) и выявлены основные закономерности управления данной системой.

Возможности биофизического подхода, примененного изначально при изучении системы красной крови, далее стали успешно развиваться в новом направлении работ - параметрическом управлении биосинтезом продуцирующих клеточных популяций. Теоретические и экспериментальные исследования показали возможность создания устойчиво функционирующих биофизических систем непрерывного биосинтеза. В таких биосистемах рабочим телом служат живые организмы, а управление режимом их функционирования осуществляется автоматизировано по показаниям датчиков состояния организмов и среды обитания. Экспериментально доказано, что в данных управляемых биотехнических системах возможно управление скоростью и биохимической направленностью синтеза организмов в пределах их генотипа. Это позволило за сравнительно короткий срок создать автоматизированные биотехнические системы параметрически управляемого биосинтеза организмов различного уровня сложности - низших и высших фототрофов, литоавтотрофных и гетеротрофных бактерий, дрожжей, простейших, высших растений, изолированных органов и тканей, а также искусственных биоценозов и микроэкосистем.

Полученными результатами продемонстрировано, что в созданных управляемых системах биосинтеза возможна реализация огромного потенциала генетически обусловленной программы роста и биосинтеза организмов при максимальной интенсивности, без каких-либо ограничений роста и развития. Реализованная идея параметрического управления биосинтезом позволила обосновать возможность создания реально действующей замкнутой системы жизнеобеспечения человека (СЖО).

Такие замкнутые системы, моделируя уникальное свойство биосферы - замкнутость круговорота веществ, представляют большой фундаментальный интерес для экспериментального изучения закономерностей существования биосферы.

В практическом отношении СЖО позволяют обеспечить высокое качество жизни для человека за пределами границы биосферы в космосе, а также в экстремальных условиях полярных широт, пустынь, высокогорья, под водой.

В 1964 году впервые осуществлена замкнутая по газообмену двухзвенная система жизнеобеспечения "человек-хлорелла", в 1965 - реализовано замыкание по воде, а в 1968 - проведены первые эксперименты в трехзвенной системе "человек - микроводоросли - высшие растения". 

На основе этих результатов был спроектирован и создан экспериментальный комплекс "БИОС-3", представляющий собой замкнутую экологическую систему жизнеобеспечения человека с автономным управлением.

Эксперименты в "БИОС-3" при участии экипажа из 2-3-х человек достигли полугодовой длительности при полном замыкании системы по газу и воде и при воспроизводстве пищи до 80% от потребностей экипажа.

Непрерывные культуры микроорганизмов оказались удобной моделью для количественного изучения экологических и эволюционных процессов. Теоретико-экспериментальные исследования позволили уточнить общую картину и найти ряд количественных закономерностей микроэволюции в микробных популяциях, описать явление автоселекции и использовать его для получения быстрорастущих микроорганизмов и сверхсинтетиков целевых продуктов.

Открытые в 50-е годы и малоизученные микроорганизмы с уникальным типом метаболизма (хемолитоавтотрофные водород-, СО- и железоокисляющие бактерии) в 70-е годы стали объектом активного изучения; на основе этих микроорганизмов в Институте биофизики СО РАН исследованы, разработаны и реализованы уникальные эффективные биосистемы получения белка одноклеточных, разрушаемых термопластичных биополимеров; биогидрометаллургические процессы извлечения цветных металлов из руд, концентратов и горных пород.

Особое место в исследованиях Института занимают морские светящиеся микроорганизмы и морская биолюминесценция как явление общеокеаническое. В Институте биофизики СО РАН впервые разработана аппаратура и методы для биолюминесцентной визуализации пространственной структуры океанических биоценозов.

Карта распространения светящихся бактерий по акватории Мирового океана:

Выполненные пионерные исследования биолюминесценции океана впоследствии вошли в практику экспедиционных морских исследований. Единственная специализированная Коллекция культур светящихся бактерий (КК ИБСО) поддерживается с 60-х годов. Проведена большая серия исследований свойств культур светящихся бактерий, установлены закономерности излучения бактериальной клетки, . На основе лиофилизированных светящихся бактерий и выделенной из них люциферазной ферментной системы предложен ряд методов экспрессного биолюминесцентного анализа для медицины, контроля состояния природной среды и управления биотехнологическими процессами.

Опыт работы в океанографических экспедициях и потребности современной экологии в интегральных методах позволили обосновать и сформулировать новое экологическое направление в биофизике - обоснована возможность непрямого подхода к диагностике состояния больших природных экосистем путем измерения возмущений, вносимых в физические поля природной среды естественными процессами, происходящими в биосфере, а также в результате антропогенных воздействий. Для дистанционного измерения оптических характеристик водных масс и растительных сообществ разработана и построена специальная аппаратура, позволяющая со скоростью движения носителя получать информацию о первичной продуктивности морских биоценозов, сельскохозяйственных посевов, лесов, загрязнении вод. Исследования на Енисее, Байкале, Каспии, Тихом и Индийском океане показали пригодность методов для различных гидрооптических условий. На этой основе сформированы научно-социальные проекты "Экология величайших рек мира", "Зеленая волна", программы "Хлорофилл в биосфере", "Чистый Енисей", поддержанные Гидрологическим Обществом при ЮНЕСКО, Рабочей группой "Науки о Земле" Российской академии Наук и Национальной астронавтической федерацией США, Российским Фондом Фундаментальных исследований и др..